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Quantum mechanical operations are motivated and their formal representation is 
derived from principles of statistics as well as from interaction processes. 

1. I N T R O D U C T I O N  

For almost twenty years the problem of quantum measurement did not 
attract the interest of a broader physical community. The development of 
quantum optics, especially the progress with optical waveguides, which 
opened possibilities for optical communication systems, gave a new impetus 
to work in this field. Now quantum measurement theory is fundamental to 
quantum communication and quantum information theory. In the following 
I will confine myself to describing operations. Operations are the simplest 
nontrivial quantum measurements. They show the main features and difficult- 
ies of the theory of quantum measurements. Operations can be the starting 
point of more detailed investigations. The main material presented here is 
taken from my dissertation (Hellwig, 1967, 1969, 1971), some papers together 
with Kraus (Hellwig and Kraus, 1969, 1970, 1971), later papers by Kraus 
(1971, 1977), who discovered the complete positivity of the representing 
maps, as well as his book Kraus (1983), in which this knowledge is collected. 
Further recommended literature is Pauli (1933), Davies and Lewis (1970), 
Ludwig (1976), Davies (1976), Gudder (1979), and Busch et al. (1991). 

2. SOME GENERALITIES 

Usually, the result of a measurement is understood as a statement about 
the presence or absence of some accidental property at an individual physical 
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system on which the measurement has been performed. This is well illustrated 
in classical mechanics. Here the essence of the physical system together 
with the external conditions is encoded in a symplectic manifold JI/t and a 
Hamiltonian function. The accidence of an individual system is represented 
by a point of ~ which is unknown in general. The result of a measurement 
consists in the statement that this point is contained in a subset a C_ 
which may be the preimage of some function on ~ ,  the value of which has 
been measured. 

The philosophy of classical individual systems states that any such 
system at any time is situated at a point p E ~t, i.e., exactly the accidentals 
ct containing p are present and any other is absent. For any accidental it is 
decided whether it is present or absent. On the other hand, it is impossible 
to prepare the system in such a way that p results with certainty. The result 
of a real preparation can at most be a probability distribution described by 
a probability measure on the Borel sets of ~ which is absolutely continuous 
with respect to the Lebesgue measure. Let us consider a preparation procedure 
by which the distribution on ~ is given by the probability measure 

Ix: ~ (~ t )  ~ [0, 11 

where ~(dl/t) denotes the Borel sets of d~t. 
A measurement answering the question 

m E a  or m ~ c t  

'yes' or 'no' 

where ct E ~(~t)  and ix(a) ~ [0, 1], decomposes the ensemble into the 
statistical mixture of two subensembles according to the classical formula 
of Bayes: 

Ix = Ix(a) Ix(" n a) + Ix(~t\a) Ix(" n (~t \a) )  
Ix(a) Ix(~/t\a) 

The subensembles with the probability measures 

Ix(. nct)  Ix(. n (JI/t\/ct)) 
f~§ . -  , f L  :=  

Ix(a) Ix(~t\a) 

can be prepared by selecting those individual systems for which the result 
of the measurement is 'yes' or 'no,' respectively. Bayes' formula expresses 
the nondisturbance principle of classical measurements in that the set of 
accidentals present at an individual system is the same before and after 
the measurement. 

The classical philosophy about the accidence of physical systems does 
not apply to quantum physics. Nevertheless, selection procedures with respect 
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to 'yes ' - 'no '  experiments like the classical one just described can still be 
performed. They are called quantum mechanical operations. However, the 
'nondisturbance principle' and the formula of Bayes do not hold generally. 
The description of operations leads to generalizations of the Bayes formula 
which include the necessary quantal state changes. 

Instead of the symplectic manifold ~ with a distinguished Hamiltonian 
function we have, as the result of a quantization procedure, a complex Hilbert 
space ~ with a distinguished Hamiltonian operator H. The Boolean algebra 
formed by the characteristic functions of the Borel sets of At is in a sense 
replaced by the lattice formed by the orthogonal projections ~(~) ,  the so- 
called quantum logic. Recalling that the self-adjoint operators correspond to 
their spectral measures, quantum logics at first sight seem to extend classical 
Boolean logics to a more general one, but from the physical point of view 
this is a restriction because of the incompatibility of position and momentum. 
What is the accidence of an individual quantum system? 

To change the classical philosophy into a suitable one for quantum 
systems hidden variables have been invented. As shown by the experiments 
of A. Aspect improving the quantal form of Bell's inequality in Bohm's 
form of the Einstein-Podolski-Rosen situation, hidden variables cannot be 
maintained together with the principle of locality. Hence, believing in the 
absence of action at a distance, one has to forget about hidden variables. But 
also smaller sets of 'elements of physical reality' in the sense of Einstein, 
Podolski, and Rosen are ruled out by such experiments. 

To understand the following we need not enter into the deep philosophical 
problems about quantum reality. We only need to speak about: 

�9 Preparation procedures leading to probability measures on ~(~) .  
�9 Registration of classically observable effects on macroscopic appara- 

tuses occurring after interaction with a quantum object. 
�9 Selection procedures which render subensembles according to 

occurred or not occurred effects. 

The task is to characterize the generalizations of the classical procedure and 
of Bayes' formula without using the classical philosophy about the realization 
of the accidence and the nondisturbance principle. 

. O P E R A T I O N S  A N D  E F F E C T S  

The fundamental concepts of a statistical theory are: 

�9 A convex structure @ which represents the set of preparation proce- 
dures involved in the theory. 
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�9 A set @ representing the set of ' y e s ' - ' n o '  registration procedures 
including a trivial registration procedure which always answers 'yes.' 

�9 A probability law I1: @ • @ --~ [0, 1]. 

A trivial ' yes -no '  registration procedure ~ fulfils t i ( ' ,  ~) = 1. One forms 
classes of equivalent preparation procedures and classes of equivalent ' y e s ' -  
'no' registration procedures in the obvious way and introduces: 

�9 The convex structure of states ~ consisting of the classes of equiva- 
lent preparation procedures. 

�9 The set of effects @ consisting of the classes of equivalent registration 
procedures; the class of trivial registration procedures shall be denoted 
by e. 

�9 The probability law Ix: ~ • @ --* [0, 1]. 

For the trivial effect e, I~(', e) = 1. The advantage of this factorization is 
that the set of effects is separating the set of states and the set of states is 
separating the set of effects. By a well-known and simple construction one 
shows that ~ ,  @, Ix, and e can be identified with objects in a dual pair of 
partially ordered normed complete vector spaces ~ ,  ~ ' ,  where: 

�9 ~ forms a base of the convex cone ~+ of positive elements of ~ ,  
the norm of which is the base norm. 

�9 e is the order unit of ~ ' ,  ~ is its order unit segment, and the norm 
is the order unit norm. 

�9 F is just the restriction to @ • @ of the bilinear pairing ( . ,  �9 ) of 
(~, ~'). 

Although the following can be formulated in this abstract setting, we 
will confine ourselves to the Hilbert space model of quantum mechanics. Let 

denote a Hilbert space; then: 

�9 ~ is the space ~ , ( ~ ) ~  of Hermitian trace class operators in ~ with 
the trace norm IITII := tr(I TI), T e ~ , (~)= .  

�9 ~ '  is the space of bounded Hermitian operators ~ s ( ~ )  in ~ with 
operator norm. 

�9 (T, A ) : =  tr(T, A), T E ~ , (~)~ ,  A e ~ , ( ~ ) .  
�9 @ is the set of positive elements W e ~ , ( ~ ) =  with tr(W) = 1. 
�9 @ :=  {F E ~ , (3~)10  ~ F ~ 1}. 
�9 e is the unit operator 1 of ~ .  

In the following let W e ~ and F, G e @. 
It is useful to have a formal scheme of a ' y e s ' - ' no '  measurement in 

mind (Fig. 1), showing preparation and registration apparatuses as black 
boxes. Let N+ be the number of results 'yes' and N_ be the number of results 
'no' in a series of N experiments. Then for N --) 
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w I J 
I I F [ 

Fig. 1. 

N+ N_ 
- -  ~ tr(WF), - -  --~ tr(W(l - F)) 
N N 

A nonselective operation is a 'yes ' - 'no '  experiment which does not 
absorb the objects such that subsequent experiments with them can be per- 
formed. The formal scheme of a nonselective operation is shown in Fig. 2, 
where W ~ 1~ describes the state change caused by the operation and G is 
the operator of a subsequent measurement. 

In a selective operation the objects which cause the answer 'no' will be 
absorbed while the objects causing the answer 'yes' become free thereafter 
and are available for subsequent experiments. By this selection procedure 
the state change W --~ W+ is caused. The formal scheme is shown in Fig. 3. 

Analogously, a selective operation can be considered in which the objects 
causing ' - '  become free thereafter and those causing ' + '  are absorbed. The 
state prepared by this procedure is denoted by W_. 

If the classical nondisturbance principle held, the density operators W, 
W+, W_, and F would be related by the formula of Bayes. Since this principle 
fails to hold, we have to look for more general relations. 

w I A F I ...... 
I I I 

Fig. 2. 

I c ] 
I 
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Fig. 3. 
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Obviously we can state 

r w + ,  tr(WF) = 1 
= "~W_, tr(WF) = 0 

t tr(WF)W+ + tr(W(1 - F))W_, otherwise 

J. von Neumann and G. Ltiders (LiJders, 1951) supposed in the case that the 
effect operator is a projection operator E that 

~+ _ E W E  I,~/_ = (1 - E)W(I - E)  

tr(WF)' tr(W(1 - F)) 

This assumption is often called the "minimal disturbance principle." These 
formulas presuppose that the effect is presented by a projection operator and 
do not make sense for general effect operators F, 0 -< F - 1. 

Instead of the projection postulate 

W ~ E W E  

we now introduce a mapping 

�9 : | -->~+ u {0} c_ 

~'tr(WF)l$'+, tr(WF) 4= 0 
W ~ [0,  otherwise 

which makes sense also in the general case. Observe now that the projection 
postulate is the restriction to ,~ of a complex linear map of the complex 
space gt(9~)l into itself, which is, moreover, completely positive. We will 
show by simple assumptions that both properties also hold true for the 
mapping @ and that the set of mappings characterized by these two properties 
appear as the natural generalizations of the von Neumann-Liiders postulates. 
Furthermore, this set of mappings just comes out when the measurement is 
understood as a result of an interaction process. 

By the very definition of statistical mixtures it is clear that the mapping 
must be affine, i.e., for $1, $2 E ~ and 0 -< k --< 1 there holds 

(I)(}kS 1 + (1  - -  }k)S2)  = ~k( I ) (S l )  -~" ( 1  - }k) ( I ) (S2)  

One checks easily that 

r ~*  u {0} --> ~*  u {o} 

T ,--* (tr T ) ~  , otherwise 
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extends q~ from @ to q~+ U {0} C_ ~,(3~)1, where ~+ is the positive cone 
of the real space of the symmetric trace class operators, and this extension 
is homogeneous for positive numbers and additive. Since the positive cone 
of ~ l ( ~ )  is generating, i.e., any T ~ ~ l ( ~ )  can be written as T = T+ - 
T_, 7"+, T_ ~ ~+ t J {0}, it is almost trivial to check that 

�9 r(T) := dPr(T+) + ~r(T_) 

is well defined and a linear extension of q~+ from c~+ t,J {0} to ~,(~)1,  which 
is positive by construction. By 

�9 c(T~ + iT2):= q0~(Tt) + iqgr(T2) 

this map extends linearly to the complex space of all trace class operators. 
Finally, one can show that ~,. is bounded with respect to the trace norm, i.e., 

IId/'(T)Itl --< CIITII~, IITII~ = tr[(T + T) ~/21 

and that a bound is given by 

su tr(qb(W)) < 1 C = w ~  

By construction there holds for F E @ and W E 

tr(WF) = tr(d~(W)) 

Since the space of bounded linear operators ~ ( ~ )  is just the Banach dual 
of the space ~(~)~ with the trace norm and the extension qbc of qb is bounded, 
we can introduce uniquely the dual mapping 

q~*: ~ ( ~ )  --> ~ ( ~ )  

by the requirement that for any T ~ ~(~)1 

tr(T~*(X)) = tr(q)c(T)X), X ~ ~ ( ~ )  

�9 * is a linear, operator-norm bounded, positive map with 

IldP*(X)]] ~ ( s u t  tr(d0(W))]lXI] 

such that the bound is less than one. Obviously there holds 

F = q)*(1) 

Summing up to this point, we have established, by the purely statistical 
argument that convex mixtures of preparations can always be prepared, a 
relation between W ~ ~ ,  W+, and F, namely, that there is a linear, bounded, 
positive operator 

Oc" ~ ( ~ ) l  ~ ~r~(~)l 
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such that 

~+_ r 
tr(FW) 

Remember that tr(FW) = tr(@,.(W)), and F = qb*(1). 
This relation becomes much more specific after establishing the complete 

positivity of  the map qbc. If  one considers the state change as the result of  
an interaction with another quantum system, the apparatus on which an 
observation is described by the yon Neumann-Ltiders assumption, this prop- 
erty is a formal consequence. But one may also establish it more directly, as 
we will do now. 

Any two quantum systems can be considered as being coupled one to 
the other such that they are described in the common Hilbert space ~ Q 
~2. The reason for the tensor product structure is the fact that the observables 
of each component are observables of the composed system and two observ- 
ables concerning different subsystems have to be commensurable. Consider 
now our quantum object described in the Hilbert space ~ to be coupled with 
an n-level system described in C n. By the argument which has been used to 
establish the tensor product structure ~ | C n one may assume that operations 
concerning only the object described in ~ must be extended to the composed 
system in such a manner that at least when correlations are absent the state 
of  the n-level component is not affected. 

To that end we realize that the density operators in ~ | C n are limit 
points of linear combinations of  uncorrelated density operators like W | V, 
W E ~ ( ~ ) ,  V E ~ (C" )  and have the shape 

Wll W12 "*" Win ~ 

::... wu ~ ( ~ ) |  E / 

Wnl Wn2 *'" Wnn ] / 
where 

tr((Wu)) = .~ tr ~ i  = 1 
i=I 

Especially, an uncorrelated state has the shape 

/ W V l l  WVl2 .oo WVin \ 
W (~ ((vij)) _.~ ( wl]21 Wv22 . . -  Wv2n) .** . . . . . . . . . . . . . . . . . . . . .  

\ Wv, l Wv,: . . . .  Wv,n/ 

Hence, an operation @ on the object Hilbert space 7~ must obviously be 
extended to act on uncorrelated states in ~ | C n in such a way that 
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I~i.)n: W @ ((Vij)) ~ {~(W) @ ((Vij)) 
/~(W)Vl i (I)(W)vl 2 "'" (I)(W)Vln \ 

: / . . . .  

\ ~(w)vo~ ,~(w)v.2 ... ~(w)v~./ 

Since qb is linear and bounded, the mappings just defined for uncorrelated 
states can be extended to a linear and bounded map onto the linear hull of 
the uncorrelated density operators, and because it is bounded, it can be 
continuously extended onto the space of density operators in ~ | C n to give 

/Wll W,2 ~ Win \ /l~(Wl 1)(I ) (W, 2 ) ""12~)(W2n)\ 

\Wnl  Wn2 ' ' '  W n n l l  \q)(Wnl)'''q)(wn2) "'" f~(Wnn)/ 

Now the representation of an operation cD, has to be a positive map, hence, 
the operation dp on the object acting on ~ is by definition an n-positive 
map. Since there is no restriction to the number n of levels, qb has to be 
completely positive. 

As a consequence of the Stinespring representation theorem for com- 
pletely positive mappings there is a series {A~}k~KCN of linear operators in 
7~ fulfilling 

2 A;A, <- 1 
kEK 

such that 

�9 (W) = ~ AkWA~ 
keK 

In Table I the main formulas for the von Neumann-Ltiders operation 
are compared with those of a general operation. 

Up to now, no quantum dynamic principles have been taken into consid- 
eration. The complete positivity has been established using only general 
statistical and quantum kinematic principles. 

4. EXPLICIT EXPRESSIONS OF THE Ak FOR A M E A S U R I N G  
PROCESS 

The measuring process will be treated as an interaction process between 
the object and the measuring apparatus. Both systems are quantum systems 
in principle. That the measuring apparatus has an additional structure as a 
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Table I. 

Operation von Neumann-Ltiders General 

Mathematical 
representative 

Probability for the result 

Selection according to the 
result ' + '  

Operator of two 
subsequent 
measurements 

No subsequent 
measurement 

E = E + = E 2 < _ I  

tr(WE), E --< 1 

W ,--, r = EWE 

G ~ ~*(G) = EGE 

E =  qb*(1) = E + E =  E 

{Ak}k~xcN, Z~ , r  A~Ak <-- 1 

tr(WF), F := ~,k~x A~ Ak <- 1 

W ~ ~ ( W )  = ~,k~x AkWA~ 

G ~ ~*(G) = ~,k~x A~GAk 

F = ~*(1) = Ek~xA~A~ 

many-particle system with a macroscopically observable decomposition of 
the unit operator does not enter into the following computation. Denote by: 

�9 ~o the Hilbert space of the quantum objects. 
�9 ~ a  the Hilbert space of the apparatus. 
�9 3~(~.o) D ~a 3 Wo the density operator of the ensemble of objects 

on which the measurements are performed. 
�9 ~ff~(~a) ~ ~)a ~ Wa the density operator of the ensemble of measuring 

apparatuses by which the measurements are performed. 
�9 ~ ( ~ o  | 7{,,) 3 S the unitarian representing the solution of the 

SchrOdinger equation for an interaction of finite duration or a scatter- 
ing operator. 

We remark that unitarity is not an essential requirement. S may contain 
irreversible dynamics of the measuring apparatus, thus representing a solution 
of a Schr6dinger equation with dissipation. But at least for ~ ( ~ o  | ~ , )  D 
~(o,a) 3 W the equality 

tr W = S W S  § 

must hold. Finally: 

�9 ~ ( ~ a )  -~ {Bj }i~J is the representing sequence of the operation to be 
observed on the measuring apparatus. 

The measuring process is then described as follows. 
We are considering a series of experiments in which the object and the 

apparatus are prepared independently from one another. The initial state of 
the combined system is therefore uncorrelated. Let 
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w,, | Wa 

denote that state. The interaction (which may include irreversible motion) 
leads to the correlated state 

s(w. | Wo)S + 

On this state an operation is performed. Whether it concerns a macroscopically 
observable property of the apparatus only or a general property of the com- 
bined system as an operation, it must be described by a sequence of operators 
{Bj}jE J with EjEj BfBj --< 1. That we write 1 | Bj- instead of more general 
Bj has only aesthetic reasons and no consequences for the later computations. 
Let ~ denote the complete positive map corresponding to this operation, i.e., 

,t,(s(w,, | w,,)s +) = ~ (1 | 8pS(Wo | w,,)s+(1 | 8f)  
jEJ 

Since we want to describe the operation on the object component of the 
combined system, which means that we are interested only in the results of 
further measurements concerning the first component described in the Hilbert 
space ~o, we can use the partial trace formalism. Let tr, denote the partial 
trace with respect to the Hilbert space of the apparatus. With 

qb(Wo) := tra(~(S(Wo | Wa)S+)) 

the representing map of the desired operation is given. The density operator 
of the ensemble of objects prepared by selection according to the result ' + '  
on the apparatus is given by 

w+ @(wo) 
tr(qb(W<,)) 

To find the corresponding representing sequence of operators we write 
the map �9 corresponding to the operation on the combined system in the form 

,I,(S(Wo | wDs +) 

=tra(j~j(l | |174 l)(l | | )) 

We get the map �9 corresponding to the operation on the object system by 
forming the partial trace tra. This becomes more explicit if we write the 
bilinear form 

(q~, cb(Wo)~) = (q~, tra ~(S(Wo | Wa)S+)~J) 

3O 

= ~ ~ (~ | +~, (1 | Bj)S(1 | ,,/-~) 
j~J  v = O  

x (~, | 1)(1 | d-w])s+(1 | ~7)~b | +~} 
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where {+~}~N is a complete orthonormal system in the Hilbert space ~a of 
the apparatus. This expression suggests we introduce the series of operators 
{Ajvv.}j~J, wN,V.aN by the definition 

(q~, Aj~O) := (q~ | d~, (1 | Bj)S(1 | ,,/-~.)~ | s 

The adjoint operators are then defined by the bilinear forms 

(q~, A~t~) := (q~ | qb~, (1 | ,,ff~)S+(1 | Bfl) r | 6~) 

Replacing now the unit operator in the expression (Wo @ 1) in the equation 
for ~(Wo) by, E~=0 I +~ X ~b~ I we get the equality 

(I,(Wo),> = E E E + Aj,,, WoA),,~t~) 
jEJ v=0 Ix=0 

Since q~ and t~ are arbitrary in ~ ,  we have proved 

O(Wo) = E E Aj~.,,WoA)+v. 
j e J  v=0 p~=0 

Hence {Aj~ }j~z~ ~r~.~ ~N is a sequence of operators representing the operation 
for the object system. Since for ~ e ~o, I1,~ II = 1, we have 

tr O([@(tp[ ) = tr E E E 
jEJ v=0 ~=0 

= ~, E A),,v.Aj~v.[r 
v=0 ~=0 

and, on the other hand, 

tr ~([q~)(q~[) = ~(S(Wo | Wa)S +) --< 1 

it follows that 

F : = E E E  + A ~ A j ~  ~ 1 
j e J  v=O p.=0 

as it should be. 
Considering effects and operations as a result of interaction processes, 

this form of the representations of operations was derived by K. Kraus and 
myself at the end of the 1960s by assuming that selections by observations 
on the apparatus are to be described on a yon Neumann-Ltiders operation. 
Later Kraus realized that it is just the Stinespring representation of a complete 
positive mapping and he gave the more general arguments that this must be 
fulfilled by the very definition of an operation and the kinematics of coupled 
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systems. Hence, the artificial assumption about macroscopic observations 
could be dropped. 

The following can be proved: Let be given a complete positive linear 
mapping qb operating on ~ (~o) l  and a Hilbert space ~a. There are always 
triplets 

(W., {B/}jEJCN, S) e ~(Y~o), • (~'(Y~o)) 2 • ~(Y~o | YC.) 

where (!~'(Y~o)) 2 means that the sum of Bj + B: exists and is a bounded operator, 
such that qb arises in the manner just described. 

Moreover, one may prove that coexistent effects can be produced together 
in one and the same interaction process and many other properties fitting 
well into the philosophy of quantum measurements. The operations described 
here are the elementary building blocks by which the theory of quantum 
measurements is formed. 
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